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Multilocus Linkage Tests Based on Affected Relative Pairs
Heather J. Cordell, Geoffrey C. Wedig, Kevin B. Jacobs, and Robert C. Elston
Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio

For complex diseases, recent interest has focused on methods that take into account joint effects at interacting loci.
Conditioning on effects of disease loci at known locations can lead to increased power to detect effects at other
loci. Moreover, use of joint models allows investigation of the etiologic mechanisms that may be involved in the
disease. Here we present a method for simultaneous analysis of the joint genetic effects at several loci that uses
affected relative pairs. The method is a generalization of the two-locus LOD-score analysis for affected sib pairs
proposed by Cordell et al. We derive expressions for the relative risk, lR, to a relative of an affected individual, in
terms of the additive and epistatic components of variance at an arbitrary number of disease loci, and we show
how these can be used to fit a likelihood model to the identity-by-descent sharing among pairs of affected relatives
in extended pedigrees. We implement the method by use of a stepwise strategy in which, given evidence of linkage
to disease at locations on the genome, we calculate the conditional likelihood curve across the genome form 5 1
an mth disease locus, using multipoint methods similar to those proposed by Kruglyak et al. We evaluate the
properties of our method by use of simulated data and present an application to real data from families with
insulin-dependent diabetes mellitus.

Introduction

In recent years, several methods have been proposed for
the simultaneous detection of multiple loci involved in
complex diseases. These include model-based methods,
in which a detailed model is specified for the disease
mode of inheritance, and nonparametric—or model-
free—methods, in which details such as allele frequencies
and penetrance functions for the disease are not specified
(Elston 1998). Model-based methods include the two-
locus LOD-score method described by Lathrop and Ott
(1990) and Schork et al. (1993). Model-free methods
include the sib-pair methods of Dizier and Clerget-Dar-
poux (1986) and Knapp et al. (1994), the two-locus
marker-association-segregation x2 (MASC) method
(Dizier et al. 1994), the two-locus maximum LOD score
or maximum-likelihood statistic (MLS) (Cordell et al.
1995; Farrall 1997; Olson 1997) or score statistic (Du-
puis et al. 1995), and the two-locus weighted pairwise
correlation (WPC) method (Zinn-Justin and Abel 1998).
Recently, Cox et al. (1998), Strauch et al. (1998), Xu et
al. (1998), and Cordell et al. (1999) have further inves-
tigated the use of increasing the power to detect an effect
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by conditioning on an effect at a previously identified
disease-gene location. Although all of these methods are
ultimately aimed at detection of effects at multiple in-
teracting loci, in practice they have normally been re-
stricted to the analysis of no more than two loci, because
of either theoretical or computational constraints. In ad-
dition, the methods proposed by Dizier and Clerget-Dar-
poux (1986), Knapp et al. (1994), and Cordell et al.
(1995) are restricted to sib pairs or affected sib pairs
(ASPs), which may be a convenient unit of sampling but
which means that we discard information from other
affected relatives when they are available. The methods
of Lathrop and Ott (1990) and Zinn-Justin and Abel
(1998), although not restricted to sib pairs, require spec-
ification of the true (two-locus) genetic model or class
of models. In addition, the model-based approach of
Lathrop and Ott (1990) and Schork et al. (1993) in-
volves a large and sometimes infeasible computational
burden.

We should distinguish between those methods whose
primary focus is the detection of disease loci and those
whose focus is to model the interaction of disease loci.
These two goals are clearly interrelated, but which goal
is the primary focus is not always clear from the meth-
odology. In the present study, we take, as our primary
aim, the detection of disease loci in the presence of ep-
istatic interactions, while noting that the methods we
describe may also, under certain circumstances, be used
to test specific hypotheses concerning the interactions.
This is in the spirit of approaches proposed by Elston
(1995) and Tiwari and Elston (1997), for analysis of
two-locus quantitative traits. Cox et al. (1998), Xu et
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al. (1998), and Cox et al. (1999) have recently proposed
a method that involves weighting a family’s contribu-
tion to the test statistic at one locus according to the
magnitude of the family’s contribution to the test sta-
tistic at another locus. Although this is a potentially
appealing way of conditioning on a known locus, the
choice of weighting scheme may be problematic and
may not necessarily reflect a feasible genetic model, yet
some properties of the true genetic model (e.g., heter-
ogeneity or epistasis) must be assumed, to generate the
weights. The method is reminiscent of simply selecting
one’s data according to either identity-by-descent (IBD)
sharing or the genotypes possessed at a known locus.
Although this has been a useful means for the detection
of some effects—for example, at IDDM4 conditioned
on IDDM1 in type 1 diabetes (Davies et al. 1994; Mein
et al. 1998)—this procedure is rather arbitrary. It is not
clear, for example, whether the data should be sub-
divided into families sharing 2 alleles IBD and families
sharing 1 or 0 alleles IBD at the known locus or into
families sharing 0 alleles IBD and families sharing 1 or
2 alleles IBD at this locus. If tests are performed in
several subsamples of families, they may need to be
corrected for multiple testing—for example, by use of
a Bonferroni correction, which will reduce the signifi-
cance of any result. Furthermore, even if a second locus
does exist, the procedure may in fact result in an ob-
served decrease—rather than an increase—in signifi-
cance, because of the decrease in the effective sample
size in each subsample.

In contrast, the method proposed in the present study
is a generalization of the two-locus MLS method (Cor-
dell et al. 1995), which is based on IBD allele sharing
at several loci. Linkage tests that are based on allele
sharing (Weeks and Lange 1988; Risch 1990a, 1990b;
Whittemore and Halpern 1994) are a popular alter-
native to traditional model-based linkage analysis when
mapping susceptibility genes for complex traits, since
they require no explicit prior specification of the inher-
itance model. In recent years, Kruglyak and Lander
(1995) and Kruglyak et al. (1996) have developed al-
gorithms that extract the full multipoint inheritance in-
formation from pedigrees of moderate size, allowing
IBD sharing among pairs or sets of relatives to be prob-
abilistically inferred across the whole genome. These
calculations have been incorporated into the computer
programs GENEHUNTER and MAPMAKER/SIBS, for
analysis of extended pedigrees and affected sib pairs,
respectively. Although the inheritance pattern extracted
by GENEHUNTER represents the fullest possible in-
heritance information available from a pedigree (under
the assumption of no interference), there are some prob-
lems with the linkage test proposed by Kruglyak et al.
(1996). First, the test has been shown to be conservative
when the descent information is incomplete (Kruglyak

et al. 1996; Kong and Cox 1997). Second, the general
shape of the “nonparametric linkage” (NPL) curve ob-
tained tends to decrease between markers, because in-
formation is more incomplete for a location midway
between two markers than it is for a location close to
a marker. This contrasts with the results from model-
based (parametric) LOD-score analysis and with those
from MAPMAKER/SIBS. In fact, the results from
GENEHUNTER do not necessarily bear any direct re-
lationship to the results from MAPMAKER/SIBS, even
if only nuclear families are used, since the statistics used
in GENEHUNTER are based on the scoring functions
discussed by Whittemore and Halpern (1994), rather
than on the likelihood-based statistics proposed by
Risch (1990a, 1990b) and used in MAPMAKER/SIBS.
This is somewhat unsatisfactory, since we would prefer
our results for extended pedigrees to be a generalization
of those for sib pairs.

Kong and Cox (1997) have proposed an alternative
one-parameter linkage test that addresses many of the
problems with the tests proposed by Kruglyak et al.
(1996). In particular, their method is more powerful
than that of Kruglyak et al. (1996), and it produces
NPL curves that conform in shape to traditional model-
based LOD-score curves. However, the method pro-
posed by Kong and Cox (1997), although likelihood
based, is not directly equivalent to the ASP likelihood-
ratio statistic of Risch (1990a, 1990b), unless additional
parameters are included.

Here, in contrast, we propose a generalization of the
MLS statistic for ASPs that was proposed by Risch
(1990a; 1990b), using all pairs of affected relatives in
a pedigree. It has been shown (Cordell et al. 1995; Du-
puis et al. 1995) that, with an MLS or score approach,
the power to detect effects at unlinked loci is increased
by use of two-locus methods, provided that the true
genetic model is not multiplicative, as defined by Risch
(1990a). If the true genetic model is multiplicative, then
the two-locus MLS for two unlinked loci is equal to the
sum of the individual single-locus MLSs at the two loci,
and no further significance is achieved by modeling the
joint action of the loci. However, the initial significances
at the individual loci will not be decreased. The MLS
approach allows immediate generalization to models
that involve an arbitrary number of disease loci via an
extension of the methods described by Cordell et al.
(1995) and Farrall (1997). All that is required is to be
able to calculate the prior and posterior probabilities
that each affected relative pair shares i alleles IBD (i =

) at particular locations on the genome. By use of0,1,2
the term “prior probabilities,” we mean probabilities
that are based purely on relationship, whereas, by use
of the term “posterior probabilities,” we mean proba-
bilities that are conditional on both relationship and
marker data.
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Methods

For the jth affected pair of relatives in a pedigree, define
wij to be the probability of the observed marker data,
given that the pair share i alleles IBD at a single marker
locus. Risch (1990c) showed that, for ASPs, the likeli-
hood may be written as , where zi is the pop-2� z wi=0 i ij

ulation parameter (to be estimated) that corresponds to
the probability that an ASP shares i alleles IBD at the
marker. Under the null hypothesis that the marker is
unlinked to disease, the parameters should take(z ,z ,z )0 1 2

the values that correspond to the Mendelian(.25,.5,.25)
probabilities of a random sib pair sharing 0, 1, or 2
alleles IBD. By defining fi to be the prior probabilities

and by defining to be the posterior prob-ˆ(.25,.5,.25) fij

abilities, given the observed marker data of the jth pair
sharing i alleles IBD, then, by use of Bayes theorem, we
may write the likelihood for pair j as

2 ˆz f P(observed marker data)i ijL = .�j fi=0 i

Similarly, for an m locus-disease model, the likelihood
for the jth ASP may be written as

2 2

L = ��j
i =0 i =01 2

2 ˆz f P(observed marker data)i i )i i i )i j1 2 m 1 2 m) ,�
fi =0m i i )i1 2 m

where now , , and refer to the sameˆz f fi i )i i i )i j i i )i1 2 m 1 2 m 1 2 m

sharing probabilities but at the m loci simulta-
neously—for example, is the probability that anz00)0

ASP shares 0 alleles IBD at each of the m loci. These
expressions for the likelihood lead to the following ex-
pression for the log-likelihood–ratio test statistic (MLS)
for testing of the null hypothesis that the m loci are all
unlinked to disease:

2 2 2 ˆẑ fi i )i i i )i j1 2 m 1 2 mMLS = log ) , (1)� �� �10 ( )fj i =0 i =0 i =01 2 m i i )i1 2 m

where the are maximum-likelihood estimates ofẑi i )i1 2 m

the relevant sharing probabilities.
This equation is, in fact, quite general, since, by de-

fining the probabilities and as the relevantf zi i )i j i i )i j1 2 m 1 2 m

sharing probabilities for relative pair j, which may be
of varying type (e.g., sibs, cousins, uncle-nephew etc.),
we can use essentially the same expression,

2 2 2 ˆẑ fi i )i j i i )i j1 2 m 1 2 mMLS = log ) , (2)� �� �10 ( )fj i =0 i =0 i =01 2 m i i )i j1 2 m

as a test of the same null hypothesis, using data from
a sample of affected relative pairs of varying types. If
the sharing between pairs is independent, then this is a
valid test statistic, since the likelihood for the whole
data set is the product of the likelihoods for each pair.
Meunier et al. (1997) and Greenwood and Bull (1999)
have shown that, for a single locus and with both par-
ents typed, this is approximately valid (giving a slight
increase in type 1 error) when all possible (noninde-
pendent) pairs from a nuclear family are used in an ASP
study. However, for extended family data, it is not clear
whether this result will still hold, since the correlation
between pairs may be much greater. We therefore con-
sider using (2) as a pseudolikelihood, and we estimate
significance levels by using simulation rather than by
relying on asymptotic results.

In the Appendix, we show that the , estimatedzi i )i j1 2 m

by in (2), may be written in terms of the priorẑi i )i j1 2 m

probabilities and the underlying additivemf 3 � 1i i )i j1 2 m

and dominance variances caused by the m disease-caus-
ing loci (divided by a constant). The MLS may therefore
be written in terms of the variance components (divided
by a constant) and the prior and posterior probabilities
of the IBD sharing at the m loci. For all relatives, these
probabilities can be calculated at increments across the
genome, by use of the inheritance-vector distribution
(Kruglyak et al. 1996). By maximizing the likelihood
with respect to the variance component parameters,
rather than with respect to the , we may fit spe-zi i )i j1 2 m

cific classes of genetic models to the data—for example,
single-locus models, two-locus models, three-locus
models, etc. Note that the “possible triangle” restric-
tions on the zs (Holmans 1993) will automatically be
satisfied by restriction of the variance components to
nonnegative quantities. When more than one disease
locus is considered, we may set the second- or higher-
order (epistatic) variance components to 0 (Cordell et
al. 1995), which fits an additive model on the pene-
trance scale to the effects at the m unlinked loci. This
model is a good approximation of a model of genetic
heterogeneity (Risch 1990a), which biologically implies
that the loci act via separate etiologic pathways to cause
the disease. Alternatively, by expressing the epistatic
components in terms of the first-order variance com-
ponents, we can fit the multiplicative epistatic model
defined by Risch (1990a). Note that, for unlinked loci,
the MLS for a multiplicative model will equal the sum
of the individual single-locus MLS values and, therefore,
will give no increased power to detect an effect.

The additional evidence for linkage at a locus, con-
ditional on linkage at previous loci, can be as-m � 1
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Figure 1 Structure of pedigrees used for the simulation study.
Families were included in the study if they had at least three affected
members in generation III, including at least one affected individual
in each sibship. Individuals in generation I were assumed to be una-
vailable for genotyping.

sessed by the difference in MLS between the best-fitting
locus model and the model with an mth locusm � 1

included (Cordell et al. 1995). We can calculate MLS
curves across the genome, for a series of nested models,
by looking first for evidence of a single disease locus,
then by conditioning on a first locus at a given position
and looking for evidence at a second disease locus, and
then by conditioning on two loci at given locations and
looking for evidence at a third disease locus, and so on.
Alternatively, we could start by conditioning on effects
at previously identified loci. Although this procedure
could theoretically be continued for an arbitrary num-
ber of loci, the amount of data available and the in-
creased degrees of freedom for the m locus models will
limit the number of loci that can be modeled simulta-
neously; for data sets of the size currently available, it
may not be useful for more than ∼3 disease loci. How-
ever, by fitting a restricted model such as the previously
described additive model, the degrees of freedom can
be significantly reduced, and larger numbers of disease
loci could be considered simultaneously.

Results

The methods described above were applied to simulated
and to real data. We generated IBD probabilities by use
of the program GENIBD (S.A.G.E. 1998), which has the
advantages of being significantly faster than the GENE-
HUNTER program of Kruglyak et al. (1996) and of
allowing for a slightly larger maximum family size. We
used a yet-to-be released version of GENIBD that also
allows the calculation of joint IBD probabilities at linked
loci.

Application to Simulated Data

We simulated data for 25 families with the pedigree
structure shown in figure 1. This structure is identical
to that simulated by Kruglyak et al (1996). Marker data
were simulated at 11 markers spaced at 10-cM intervals
on each of four chromosomes, under the assumption that
each marker had five equifrequent alleles. The disease
was assumed to be caused by a three-locus model, with
three disease loci—A, B, and C—lying in the centers of
chromosomes 1, 2, and 3. The population prevalence of
each disease allele was .05, and the penetrance of each
three-locus genotype was 1 for individuals who pos-
sessed two disease alleles at any of the three disease loci
and was 0 otherwise. Families were included in the study
if they had at least three affected members in generation
III, with at least one affected individual in each gener-
ation III sibship. Individuals in generation I were as-
sumed to be unavailable for genotyping.

Significance levels for MLS values obtained in a data
set were calculated by simulation and analysis of sets of
marker data across a chromosome for an identical data

set (in terms of structure of families and disease status
of individuals). The alleles across a chromosome were
dropped at random through the given families (allowing
for intermarker recombination by use of the Haldane
mapping function), and, for testing of a single-locus
model, the distribution of the resulting MLS at any given
location was calculated. For testing of an mth locus un-
linked to a set of previous loci, a similar procedurem � 1
can be followed, but the marker data in the regions of
the loci must be fixed at their original observedm � 1
values. This procedure will not be valid if the mth locus
is linked to any of the previous , although con-m � 1
sideration of the distribution of the MLS in this case
(Farrall 1997) suggests that this procedure will then give
conservative significance levels. By examination of the
distribution of the resulting multipoint MLSs at a single
location, approximate data-specific pointwise (as op-
posed to genomewide) P values can be found. Note that
the significance levels will be data-set specific because of
the correlation between the affected relative pairs, and,
hence, simulation will be needed to generate the P values,
unless only independent pairs are used.

The MLS results for a single simulated replicate are
shown in figure 2. Although analysis of a single replicate
does not allow us to make a global inference about
power, it is useful in terms of illustrating the kind of
results we might expect to find in an analysis of real
data. We see that locus A is easily identified, with an
MLS of 9.8 ( ) in the correct location, but thatP ! .001
locus B is less significant, with an MLS of 1.8 ( )P = .02
at the correct location or of 3.4 ( ) at a distanceP ≈ .002
of 16 cM away. Locus C is also less significant, with an
MLS of 2.2 ( ) at the correct location. Figure 2P = .01
also shows, for chromosomes 2 and 3, the improvement
in MLS when a two-locus analysis is performed, con-
ditioning on the result for locus A on chromosome 1.
We see that the additive and general two-locus analyses
give a big improvement, compared with the single-locus
analysis, in terms of locating the second disease locus
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Figure 2 Single-locus and two-locus MLS results against chromosomal location (in cM), for data simulated under a three-locus recessive
model. Dotted lines indicate additive MLS; dashed lines, multiplicative or single-locus MLS; and solid lines, general MLS.

both more accurately and with greater significance, giv-
ing an additive MLS of 4.7 ( ) or a general MLSP ! .001
of 6.3 ( ) close to locus B and an additive MLSP ! .001
of 4.2 ( ) or a general MLS of 4.3 ( ) atP ! .001 P ≈ .003
locus C. We also used a three-locus model to analyze
the data for chromosome 3, given the results at loci A
and B, but no further improvement in significance was
found, compared with the two-locus model.

To investigate the power of the multilocus strategy in
a larger number of replicates, we simulated 100 repli-
cates of the three-locus model described above. Since
calculation of P values in the extreme tail of the distri-
bution would be prohibitively time consuming, we sim-
ulated only 10 sets of families—rather than 25 fami-
lies—per replicate, to generate more-modest significance
levels. We found that the additive or general MLS for
locus B, conditional on locus A, was more significant
than the single-locus (or multiplicative) MLS for locus
B alone, in 56% of replicates. Specifically, the power to
detect locus B (with ) was 57% for the additiveP = .05
MLS and 56% for the general MLS, compared with
51% for the single-locus or multiplicative MLS, illus-
trating a small increase in power when the multilocus
method was used. Results were similar for locus C (as
expected by symmetry).

We simulated two further three-locus models in which
the effect at locus A was large, compared with the effects

at loci B and C. This might be expected to more closely
resemble the situation in type 1 diabetes (see analysis of
real data below), in which there is a single major genetic
component (the locus IDDM1 in the HLA region on
chromosome 6p21) but in which there is also a large
number of smaller effects at other loci. The models were
identical to that described previously, except that, in the
first, or symmetric (in loci B and C), model, the pene-
trance of each three-locus genotype was 1 for individuals
with two disease alleles at A and .25 for individuals with
two disease alleles at locus B or C. In the second, or
asymmetric, model the penetrance of each three-locus
genotype was 1 for individuals with two disease alleles
at locus A, .5 for individuals with two disease alleles at
locus B, and .25 for individuals with two disease alleles
at locus C. For the symmetric model, we found that the
additive or general MLS for locus B, conditional on locus
A, was more significant than the single-locus (or mul-
tiplicative) MLS for locus B alone, in 69% of replicates,
with a power to detect an effect (with ) that wasP = .05
13% for the additive model and 8% for the general
model, compared with 7% for the single-locus model.
For the asymmetric model, we found that the additive
or general MLS for locus B, conditional on locus A, was
more significant than the single-locus (or multiplicative)
MLS for locus B alone, in 70% of replicates, with a
power to detect an effect (with ) that was 31%P = .05
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Table 1

Maximum and Conditional MLS Values (with P Values) for Selected Chromosomes

CHROMOSOME

CLOSEST MARKER

(OR IDDM LOCUS)

LOCATION

ON FIG. 3
(CM)

MLS (P)

Single Locusa

Two Locus
Conditional

Three Locus
Conditional

3 D3S1576 ) 1.01 (.03) 1.28 (.04) 2.88 (.004)
6 D6S291 (IDDM1) 29 34.7 (HS) ) ()) ) ())
6 D6S294-D6S286 56 19.4 (HS) 2.42b (.001) 2.60 (.008)
8 D8S88 111 .70 (NS) 1.62 (.03) 2.25 (.01)
10 D10S220 (IDDM10) 51 4.67 (.000004) 5.02 (.000008) ) ())
11 TH/INS (IDDM2) 3 2.77 (.0003) 4.14 (.00006) 5.17 (.0002)
11 FGF3 (IDDM4) 81 .54 (NS) 2.04b (.002) 1.97b (.003)
14 D14S75-D14S276 ) 1.95 (.002) 2.42 (.003) 2.83 (.004)
15 CYP19-D15S125 39–57 .74 (.05) 1.12b (.02) 1.72b (.005)
16 D16S3098 87 3.24 (.0001) 4.92 (.00001) 5.02 (.0002)
18 D18S487 72 1.10 (.02) 1.95b (.002) 1.98b (.003)
19 D19S226 ) 1.80 (.004) 1.96 (.02) 2.18 (.02)
21 D21S120 5 .06 (NS) .95 (.07) 1.59 (.04)
Pseudoautosomal DXYS154 33 1.23 (.02) 1.65b (.005) 1.12b (.02)

NOTE.— Results are given for a stepwise procedure that consists of a single-locus analysis, followed by a two-
locus analysis conditional on IDDM1 and, finally, a three-locus analysis conditional on IDDM1 and IDDM10.

a NS = not significant ( ); HS = highly significant ( )P 1 .05 P ! .000001
b Results are given for the additive model.

for the additive model and 27% for the general model,
compared with 19% for the single-locus model.

Application to Real Data for Type 1 Diabetes

We also analyzed real data from a second genome
screen (Mein et al. 1998) of 356 ASPs (with genotyped
parents) affected with type 1 diabetes. Type 1 diabetes,
or insulin-dependent diabetes mellitus (IDDM), is a com-
plex trait with a number of genetic and environmental
determinants. The major genetic component is the locus
IDDM1 in the HLA region on chromosome 6p21, but
a large number of smaller effects at other loci have also
been identified (Davies et al. 1994). Since IDDM1 plays
such an important role in the disease, it is of interest to
examine the effects at other loci after the effect of
IDDM1 has been taken into account. This has been done
for IDDM2 and IDDM4, by use of two-locus MLS
methods (Cordell et al 1995), and, more crudely, in other
regions of the genome, by subdivision of the data ac-
cording to HLA sharing status, genotype, or alleles pre-
sent (Davies et al. 1994; Mein et al. 1998; Cucca et al.
1998a). Here we use our previously described stepwise
strategy.

Table 1 shows all locations in the genome with an
MLS 1 1.4 ( ), as obtained by use of a single-locusP = .01
analysis. Table 1 also includes locations that were not
significant in the single-locus analysis but that were in-
teresting in light of subsequent multilocus analyses. The
most-significant MLS is at IDDM1. For the two-locus
analysis, we therefore fix IDDM1 as the first disease
locus and consider the joint IBD sharing at IDDM1 and
at a second locus, which is placed at 1-cM intervals

across the genome. MLS curves were fitted under mul-
tiplicative, additive, and general genetic models, for the
action of the two loci; the MLS for the action of IDDM1
was subtracted so that the curves represent the addi-
tional effect of locus 2 and, for multiplicative and general
models, its epistatic interactions (Cordell et al. 1995).
We call these MLS values “conditional MLS values,”
since the statistics are conditional on the previously iden-
tified effect at IDDM1.

As expected, at positions unlinked to IDDM1, the
multiplicative curves were identical to those curves ob-
tained by use of a single-locus model (data not shown)
for locus 2. The P values for these conditional multi-
plicative MLS values will therefore be identical to those
given by Holmans (1993) for the single-locus “possible
triangle” method. Since each family contains exactly two
affected sibs, no correction for nonindependence of the
pairs is required. The additive model has the same num-
ber of free parameters (two for each locus) as does the
multiplicative model; therefore, the distribution of the
test statistic for the additive model should be similar to
that of the single-locus MLS, as has indeed been ob-
served in simulations for a variety of specific additive
models (Cordell et al. 1995; Farrall 1997). The distri-
bution of the general two-locus MLS is somewhat dif-
ferent, since there are eight free parameters when the
effect of both loci is tested and six free parameters when
the effect of locus 2, given locus 1, is tested. Imposition
of the “possible triangle” constraints means that the dis-
tribution cannot be calculated by use of standard
asymptotic theory; we therefore used simulation to cal-
culate the two-locus P values via importance sampling
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Figure 3 Two-locus MLS results (conditional on IDDM1) for IDDM data against chromosomal location in cM for chromosomes 6, 8,
10, 11, 15, 16, 18, and 21 and for the pseudo autosomal region. Dotted lines indicate additive MLS, solid lines indicate general MLS, and
dashed lines indicate multiplicative or single-locus MLS (apart from chromosome 6, where dashed lines indicate multiplicative MLS only).

(Hammersley and Handscombe 1964; Kong et al. 1992),
as described in Cordell et al. (1995).

Figure 3 and the Two Locus Conditional column of
table 1 show the most important results. Parameter es-
timates for the significant two-locus models are given in
table 2. Chromosome 6 is particularly interesting, since
we see evidence for an additional susceptibility locus in
the D6S294–D5S286 region, ∼20 cM from IDDM1,
with an additive maximum MLS of 2.42 ( ),P = .001
which is considerably more significant than the multi-
plicative MLS of 1.39 ( ) at this location. TheP = .01
position of the peak identified in this analysis lies be-
tween IDDM1 and the putative peak for IDDM15 (De-
lépine et al. 1997), ∼25 cM from IDDM15. The two-
locus analysis is particularly useful in this region, since,
with use of a single-locus method, any effects tend to be
masked by the highly significant effect at IDDM1 (e.g.,
the single-locus MLS, not accounting for IDDM1, is
19.4 at this location). The parameter estimates in table
2 indicate that, although IDDM1 makes a greater con-
tribution to the overall genetic variance, there are non-
negligible effects caused by the second locus. On this
chromosome, we also find some evidence for a third

locus on the other arm, near D6S271, which may cor-
respond to IDDM8 (Luo et al. 1995); however, in this
case, the two-locus conditional analysis does not offer
any improvement in MLS, compared with single-locus
analysis.

Chromosome 10 has the most-significant MLS outside
the HLA region, both in single- and two-locus analysis,
but the two-locus conditional result does not give
increased significance, compared with the single-locus
analysis. This locus has been previously designated as
“IDDM10” (Reed et al. 1997; Mein et al. 1998). For
chromosome 11, at IDDM2 we see a significant im-
provement in conditional MLS, an improvement from
2.77 for a single-locus or multiplicative model to 4.14
for a general model. No improvement is found when an
additive model is used. These results are similar to those
of Cordell et al. (1995), who found that epistatic com-
ponents of variance were required to model the joint
action of IDDM1 and IDDM2, although our results here
differ from theirs in that they suggest that epistatic terms
which are more general than multiplicative terms are
required. From table 2, we see that the data are well
modeled by a large dominance effect at locus 1, together
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Table 2

Parameter Estimates for Two-Locus Models (Conditional on IDDM1) for Selected Loci

PARAMETERa

CLOSEST MARKER LOCUS

D6S294b D8S88 D10S220 TH/INS FGF3b D16S3098 D18S487b DXYS154b

2V /(K )A1
2.639 1.508 3.622 .000 2.155 1.652 1.749 3.742

2V /(K )A2
4.345 .000 2.822 .000 .324 .221 .000 2.686

2V /(K )D1
7.363 2.708 6.097 3.885 5.305 .424 4.547 8.391

2V /(K )D2
.212 .000 .000 .194 1.104 .000 1.092 .000

2V /(K )A A1 2
.000 .000 .000 2.735 .000 .000 .000 .000

2V /(K )A D1 2
.000 .000 1.347 .362 .000 .000 .000 .000

2V /(K )A D2 1
.000 .000 5.286 .000 .000 7.165 .000 .000

2V /(K )D D1 2
.000 3.445 .000 .000 .000 .000 .000 .000

z00 .020 .024 .010 .023 .016 .021 .019 .010
z01 .051 .472 .046 .045 .038 .047 .038 .046
z02 .018 .024 .036 .027 .039 .026 .040 .037
z10 .037 .083 .053 .045 .068 .078 .071 .057
z11 .207 .166 .161 .153 .146 .165 .143 .167
z12 .111 .083 .120 .125 .114 .087 .113 .110
z20 .036 .123 .102 .111 .138 .065 .139 .130
z21 .212 .246 .281 .284 .281 .288 .278 .287
z22 .307 .205 .192 .186 .161 .223 .160 .157

NOTE.—Multilocus results are given for the general model, unless otherwise indicated.
a See Appendix for definitions.
b Additive model, used when the general model did not fit significantly better than the additive model.

with a large additive # additive epistatic effect plus
some smaller effects. By splitting according to HLA
status, only a modest improvement in MLS is found
among 0 or 1 sharers, indicating that our approach here
may be more powerful for detection of these types of
effects. Still considering chromosome 11, at IDDM4 we
see a significant increase in MLS, an increase from 0.54
for a single-locus model to 2.04 for an additive or
general two-locus model. This finding is consistent with
the results of Cordell et al. (1995), who showed that
IDDM1 and IDDM4 act additively to cause type 1 di-
abetes (however, these results are not completely inde-
pendent, because these two studies have 93 families in
common). A similar result is seen by splitting the data
and by analyzing only HLA 0 or 1 sharers, as might be
expected from the estimates of the sharing parameters
zij in table 2, which show deviation from expected pro-
portions when or but not when .i = 0 i = 1 i = 2

On chromosome 16, we find another significant effect
that is increased when a general two-locus model, rather
than a single-locus model, is fitted. No improvement in
significance is observed when an additive model is fitted;
indeed, a decrease in seen. Splitting according to HLA
status gives only a modest improvement among 0 or 1
sharers, as might be expected from the estimates of the
sharing parameters zij, in which little deviation in ex-
pected sharing is seen for or . This again in-i = 0 i = 1
dicates the greater power of a multilocus strategy. For
chromosome 8, we see a maximum conditional MLS of
1.62 for the general model, which is 0.9 units larger

than the single-locus MLS. The additive model gives no
improvement in MLS. These results are consistent with
those of Mein et al. (1998), who obtained, on chro-
mosome 8, a similar increase in significance among ASPs
that share 2 HLA alleles IBD but who saw no increase
among ASPs that share 0 or 1 HLA alleles IBD; see also
Cucca et al. (1998b). On chromosome 18, we find a
significant increase in MLS, an increase from 1.10 for a
single-locus model to 1.95 for a two-locus model,
whereas splitting by HLA status gives no increased sig-
nificance. On chromosome 21, we find a locus of modest
significance when a two-locus model is used, which is
similar to the result seen among pairs sharing 2 HLA
alleles IBD. Finally, in the pseudoautosomal region of
the sex chromosomes, we find an increase in MLS, an
increase from 1.23 for a single-locus model to 1.65 for
an additive and 1.87 for a general two-locus model.

Since the most-significant result for a second locus is
seen at IDDM10, we used our methods to screen for a
third locus, conditioning on the sharing at IDDM1 and
IDDM10. The calculated MLS values correspond to the
differences in MLS between the three-locus and the two-
locus model for IDDM1 and IDDM10, under three dif-
ferent genetic models: multiplicative, additive, and gen-
eral (which includes all 27 components of variance). The
P values were calculated by simulation of data under
the null hypothesis that only IDDM1 and IDDM10 have
an impact on the IBD sharing between affected sibs, by
use of 10,000 simulated replicates. Results are shown in
the Three Locus Conditional column of table 1. The
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results for chromosomes 3, 8, 15, and 21 are of partic-
ular interest, since the three-locus method gives more
significant results than either the single-locus or two-
locus methods, illustrating again the greater power of
the multilocus approach. We also conducted four-locus
analyses, assuming an additive model for the action of
a hypothetical fourth disease locus, given the effects at
IDDM1, IDDM10, and IDDM2, but we found no in-
crease in significance, compared with single-, two-, or
three-locus models.

Discussion

A variety of model-free methods for testing linkage for
complex diseases currently exists. The common feature
of most of these methods is that they measure, at dif-
ferent locations on the genome, the observed IBD sharing
between pairs or groups of relatives and that they com-
pare this with the expected sharing under the null hy-
pothesis of no linkage to disease. Within this broad class
of methods, the likelihood-based statistic proposed in
the present study has the advantage of providing a nat-
ural statistic for pairwise IBD sharing that may easily
be extended to account for multilocus disease models.
This approach has been shown, in the present study and
elsewhere (Cordell et al. 1995, 1999), to give increased
power for detection of any one of the disease loci in
certain circumstances, which will depend heavily on the
true underlying multilocus model. For the data on type
1 diabetes analyzed here, conditioning on the large effect
at IDDM1, via a two-locus model, allowed the detection
of several effects that had not been apparent from single-
locus analyses. In table 2, examination of the estimates
of the sharing parameters zij shows that, for some loci,
the deviation from expected sharing occurred in such a
way that subdividing the data according to HLA sharing
status and performing a single-locus analysis would be
expected to produce the same results as would the two-
locus analysis. For other loci, this procedure would be
unlikely to be useful. Although examination of the max-
imum-likelihood estimates of the sharing parameters can
be informative, we must beware of overinterpretation of
the estimates of the variance component parameters,
since they merely provide a means of modeling the shar-
ing parameters, under the assumption of an m locus
model of disease. For a complex disease in which there
are likely to be many loci involved, it is not clear to what
extent the parameter estimates generated under the as-
sumption of a two-locus—or even a three-locus—disease
model will resemble their true population quantities.

A possible disadvantage of the statistic presented in
(2) is that it considers only pairs of affected relatives,
as opposed to considering IBD sharing among a larger
set. Kruglyak et al. (1996) suggest that this may result
in a loss in power, since, in their simulations with

GENEHUNTER, the statistic NPLall performed better
than did the statistic NPLpairs in most cases. However,
Kong and Cox (1997) found that, for their modified
NPL statistic, the choice of scoring function (with the
use of affected pairs or all affected individuals) did not
make much difference in their final results. Although
allele sharing among large sets of affected relatives may
be more informative than sharing among pairs only, the
decrease in power for our statistic is likely to be out-
weighed by the increase in power gained by being able
to simultaneously consider and model the action of sev-
eral disease loci.

The likelihood-based statistic (2) implicitly assumes
that all affected pairs are independent, which will not
be the case for data from extended pedigrees or, indeed,
from sibships of size 12. In our own simulations of large
sibships, we found a negligible increase in type 1 errors
when we assumed independence and used equal
weights, which is consistent with the results of Meunier
et al. (1997) and Greenwood and Bull (1999). For ex-
tended family data, however, the effect of the nonin-
dependence may be much greater, depending on the
family size and the relationships involved. It is therefore
important, when using data from nonindependent pairs,
that the significance levels be calculated by use of sim-
ulation, as previously described.

In addition to testing the hypothesis of linkage at a
given location, conditional on linkages at previous lo-
cations, the multilocus models described in the present
study may be used to test the fit of specific biological
models (Cordell et al. 1995), by consideration of the
difference in MLS between a restricted (e.g., additive or
multiplicative) model and the general model. Again, the
significance of the difference in MLS must be evaluated
by simulation; an intuitive method for doing this would
be to simulate from the best-fitting additive or multi-
plicative model, to see whether the increase in MLS for
a general model is significantly large. This means that
simulation of IBD sharing among pairs of affected rel-
atives must be done using the maximum-likelihood IBD-
sharing probabilities for the additive or multiplicative
model as the “true” values. This will only be valid if
the pairs of affected relatives are in fact independent.
For the previously described IDDM data, we have ex-
actly one ASP per family, and, therefore, the independ-
ence assumption is justified. We estimated P values by
simulation, under the additional assumption that all
markers were fully informative, which greatly simplifies
the simulations (which then need only be performed at
a single marker). The results of Holmans (1993) suggest
that this should not make too much difference to the
significance criteria obtained. Using this approach, we
found that, for IDDM1 and IDDM2, there is some
evidence against the null hypothesis that these two loci
act multiplicatively (difference in , )MLS = 1.38 P = .04
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and against the null hypothesis that the two loci act
additively (difference in , ). ForMLS = 1.77 P = .01
IDDM1 and IDDM4, there is evidence against multi-
plicativity (difference in , ), butMLS = 1.49 P = .008
there is no evidence against additivity (difference in

). For IDDM1 and chromosome 16, there isMLS = 0
evidence against multiplicativity (difference in MLS =

, ), and there is strong evidence against ad-1.68 P = .02
ditivity (difference in , ). ForMLS = 4.16 P ! .0001
IDDM1 and IDDM10, there is no evidence against mul-
tiplicativity (difference in , ), butMLS = 0.36 P = .58
there is some evidence against additivity (difference in

, ).MLS = 0.87 P = .05
Use of simulation to determine significance levels,

rather than relying on some asymptotic distribution,
may seem rather cumbersome. However, even methods
for which a normal approximation is available may re-
quire simulation to evaluate significance levels, unless
the number of families is large (Kong and Cox 1997).
An alternative randomization method for calculation of
significance thresholds, which is especially useful when
parental marker data are not available, has been pro-
posed by Zhao et al. (1999). Although it is important
to set some criteria for significance, it is perhaps more
important, particularly for complex diseases, simply to
gain an idea of the general pattern of results. This can

provide a starting point in terms of determining which
regions of the genome are more or less promising for
further investigation. On this note, it is interesting to
observe that, in most cases, we find the general pattern
for the single-locus MLS results to be similar to that of
the NPL statistic of Kong and Cox (1997) but with the
MLS approach having the advantage of being easily
extended to the multilocus case.

Software for calculation of single-, two-, and three-
locus MLS values, given the prior and posterior IBD-
sharing probabilities, is available from the correspond-
ing author of the present article. Software for
calculation of the prior and posterior IBD-sharing prob-
abilities is available in a number of statistical genetics
packages, including GENIBD of S.A.G.E., which was
used for the analyses presented here.
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Appendix

Here we show that the may be written in terms of the prior probabilities and underlyingmz f 3 � 1i i )i j i i )i j1 2 m 1 2 m

additive and dominance variances (divided by a constant) caused by the m disease-causing loci.
For a relative pair j of type R, the may be written (Cordell at al. 1995) aszi i )i j1 2 m

∗ ∗KK li i )i i i )i1 2 m 1 2 mz = f = f , (A1)i i )i j i i )i j i i )i j1 2 m 1 2 m 1 2 m( ) ( )KK lR R

where K is the population prevalence of the disease, KR is the risk to relatives of type R of an affected individual,
lR is the risk ratio or relative risk , and and are the prevalence and risk ratio for a relative who∗ ∗K /K K lR i i )i i i )i1 2 m 1 2 m

shares alleles IBD with an affected individual at loci . Now lR may be written (James 1971)(i ,i , ) ,i ) 1,2) ,m1 2 m

Cov(X ,X )1 2
l = 1 � , (A2)R 2K

where Cov denotes covariance, Xi is the phenotype of person i ( )—defined to be 0 or 1, according to whetheri = 1,2
the person is unaffected or affected—and person 2 is a type R relative of person 1.

If the disease is caused by a single disease locus, we may write (Kempthorne 1957; James 1971; Risch 1990a)
, where VA and VD are the additive and dominance variances caused by the disease locus,Cov(X ,X ) = 2r V � u V1 2 R A R D

where rR is the kinship coefficient or coefficient of coancestry (the probability that a random allele from individual
1 is IBD with a random allele from the same locus in individual 2) and where uR is the coefficient of fraternity
(Trustrum 1961) or the probability that two alleles are shared IBD, at a locus, by the individuals. We may express
rR and uR in terms of the (prior) probabilities of the relative pair sharing 0, 1, and 2 alleles IBD as r = 0.5f �R 2

and . Recalling that , , and will be equivalent to the relative risks for an unrelated individual,∗ ∗ ∗0.25f u = f l l l1 R 2 0 1 2
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an offspring, and a monozygotic twin of an affected individual, respectively, we can therefore express and∗l i i )i1 2 m

lR and, thus, equation (A1), in terms of the parameters and .2 2V /(K ) V /(K )A D

If the disease is caused by effects at two disease loci, we follow a similar procedure to express and lR in∗l i i )i1 2 m

terms of and (the additive and dominance variances caused by locus k) and , , , and , theV V V V V VA D A A A D A D D Dk k 1 2 1 2 2 1 1 2

additive # additive, additive # dominance, dominance # additive, and dominance # dominance variances caused
by loci 1 and 2, respectively (Kempthorne 1957). Cordell et al. (1995) give formulae for the ( ) in∗l i ,i = 0,1,2i i 1 21 2

terms of these eight variance components and K, the population prevalence. These formulae apply, regardless of
whether the two disease loci are linked, because the are conditional on sharing i1 alleles IBD at locus 1 and i2

∗l i i1 2

at locus 2, so that any linkage information is irrelevant. All that remains is to derive expressions for lR in terms
of these same components. These have previously been derived for siblings by Cordell et al. (1995), under the
assumption of there being two unlinked disease loci, and they have been extended to the case in which the loci
are linked by Farrall (1997). More generally, for any relationship, we may write

Cov(X ,X ) = 2r V � 2r V � u V � u V � 4r V1 2 R A R A R D R D R A A1 1 2 2 1 1 2 2 12 1 2

�2q V � 2q V � u V . (A3)R A D R A D R D D12 1 2 21 2 1 12 1 2

Here, and are, respectively, the kinship coefficient and coefficient of fraternity for locus k. The termsr uR Rk k

, , , and are more difficult to define but come from the generalization of the formula for unlinkedr q q uR R R R12 12 21 12

loci (Kempthorne 1957; Cordell et al. 1995; Lynch and Walsh 1998). For unlinked loci, we can express the
coefficients as the product of the coefficients for the single-locus terms—that is, , ,r = r r q = r u q =R R R R R R R12 1 2 12 1 2 21

, and . For arbitrary linkage between the loci, we must define as the simultaneous probabilityr u u = u u rR R R R R R2 1 12 1 2 12

that a randomly chosen allele at locus 1 in individual 1 is IBD with a randomly chosen allele at locus 1 in individual
2 and that a randomly chosen allele at locus 2 in individual 1 is IBD with a randomly chosen allele at locus 2 in
individual 2. Similarly, is the probability that a randomly chosen allele at locus 1 in individual 1 is IBD withqR12

a randomly chosen allele at locus 1 in individual 2 and that 2 alleles are shared IBD by the individuals at locus 2,
and so on for and . The coefficients in equation (A3) may therefore be written asq uR R21 12

r = r = r = 0.5f � 0.25fR R R 2j 1j1 2 k

u = u = u = fR R R 2j1 2 k

2 2r = 0.5 f � 0.25 # 0.5f � 0.5 # 0.25f � 0.25 fR 22j 12j 21j 11j12

q = 0.5f � 0.25f = (by symmetry) 0.5f � 0.25f = qR 22j 12j 22j 21j R12 21R

u = f .R 22j12

By inserting the above expressions into equations (A3), (A2), and (A1), we may therefore parameterize zi i )i j1 2 m

in terms of the eight variance components divided by K2.
For an arbitrary number m of disease loci, we proceed in a similar fashion. Let be the covariance term forV S TA D

an effect that involves additive effects in a specific set S of s loci and dominance effects in a specific set T of t loci
(i.e., set S is of size s; set T is of size t). We have the general formula (Kempthorne 1957; Cordell et al. 1995)

m1 sl � 1 = ( 2 q V ) . (A4)S T� � �R ST A D2K n=1 s�t=n S,T

If the loci are all unlinked, the coefficients qST can be written as , where rR and uR ares t� r � u = (r ) (u )a�S R b�T R R Ra b

the kinship coefficient and coefficient of fraternity for the relative pair and where and are the locus-specificr uR Ra a

kinship coefficient and coefficient of fraternity at a locus a, defined, respectively, as the probability that a randomly
chosen allele at locus a in individual 1 is IBD with a randomly chosen allele at locus a in individual 2 and the
probability that the two alleles at locus a in individual 1 are IBD with the two alleles at locus a in individual 2.
More generally, if any among the loci are linked, the coefficients qST can be written as , whichq = qST a a )a ,b b )b1 2 s 1 2 t
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is defined as the simultaneous probability that, at all of the loci , a randomly chosen allele in individuala ,a ) a1 2 s

1 is IBD with a randomly chosen allele in individual 2, and that, at all of loci , the individuals share twob ,b ) b1 2 t

alleles IBD. As for two disease loci, these coefficients can be written in terms of the prior probabilities , whichfi i )i j1 2 m

will depend on the recombination fractions between any of the loci. It is helpful to illustrate this for the case of
three disease loci. In that case, we have

1
l � 1 = 2q V � 2q V � 2q V � q V � q V � q V(R 1,0 A 2,0 A 3,0 A 0,1 D 0,2 D 0,3 D2 1 2 3 1 2 3K

�4q V � 4q V � 4q V � 2q V � 2q V � 2q V12,0 A A 13,0 A A 23,0 A A 1,2 A D 1,3 A D 2,1 A D1 2 1 3 2 3 1 2 1 3 2 1

�2q V � 2q V � 2q V � q V � q V � q V2,3 A D 3,1 A D 3,2 A D 0,12 D D 0,13 D D 0,23 D D2 3 3 1 3 2 1 2 1 3 2 3

�8q V � 4q V � 4q V � 4q V123,0 A A A 12,3 A A D 13,2 A A D 23,1 A A D1 2 3 1 2 3 1 3 2 2 3 1

�2q V � 2q V � 2q V � q V ,)1,23 A D D 2,13 A D D 3,12 A D D 0,123 D D D1 2 3 2 1 3 3 1 2 1 2 3

where

q = q = q = q = 0.5f � 0.25f1,0 2,0 3,0 a,0 2(a) 1(a)

q = q = q = q = f0,1 0,2 0,3 0,a 2(a)

2 2q = 0.5 f � 0.25 # 0.5f � 0.5 # 0.25f � 0.25 fab,0 22(ab) 12(ab) 21(ab) 11(ab)

q = 0.5f � 0.25fa,b 22(ab) 12(ab)

q = f0,ab 22(ab)

3 2 2 2q = 0.5 f � 0.5 # 0.25f � 0.5 # 0.25f � 0.5 # 0.25fabc,0 222(abc) 221(abc) 212(abc) 122(abc)

2 2 2 3�0.25 # 0.5f � 0.25 # 0.5f � 0.25 # 0.5f � 0.25 f211(abc) 121(abc) 112(abc) 111(abc)

2 2q = 0.5 f � 0.25 # 0.5f � 0.25 # 0.5f � 0.25 fab,c 222(abc) 122(abc) 212(abc) 112(abc)

q = 0.5f � 0.25fa,bc 222(abc) 122(abc)

q = f0,abc 222(abc)

and where fi(a) is the (prior) probability of the pair sharing i alleles IBD at locus a, where fij(ab) is the (prior) probability
of the pair sharing i alleles IBD at locus a and j alleles IBD at locus b, where fijk(abc) is the (prior) probability of the
pair sharing i alleles IBD at locus a, j alleles IBD at locus b and k alleles IBD at locus c, and so on.

We have now expressed lR in terms of variance components divided by K2. We can use the reasoning ofm3 � 1
Cordell et al. (1995) and can apply it to equation (A4) to argue that can be expressed in the same way as∗l i i )i1 2 m

lR but with coefficients that correspond to the product of the locus-specific coefficients for the sharing at each
locus. In the case of three disease loci, this gives the following expression for :∗l i i i1 2 3

1∗l = 1 � a V � a V � a V � d V � d V � d V(i i i 1 A 2 A 3 A 1 D 2 D 3 D21 2 3 1 2 3 1 2 3K

�a a V � a a V � a a V � d d V � d d V � d d V1 2 A A 1 3 A A 2 3 A A 1 2 D D 1 3 D D 2 3 D D1 2 1 3 2 3 1 2 1 3 2 3

�a d V � a d V � a d V � a d V � a d V � a d V1 2 A D 1 3 A D 2 3 A D 2 1 A D 3 1 A D 3 2 A D1 2 1 3 2 3 2 1 3 1 3 2

�a a a V � a a d V � a d a V � d a a V1 2 3 A A A 1 2 3 A A D 1 2 3 A D A 1 2 3 D A A1 2 3 1 2 3 1 2 3 1 2 3

�a d d V � d a d V � d d a V � d d d V , (A5))1 2 3 A D D 1 2 3 D A D 1 2 3 D D A 1 2 3 D D D1 2 3 1 2 3 1 2 3 1 2 3
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where ak takes the value 0 if , 0.5 if , and 1 if and where dk takes the value 0 if , 0 ifi = 0 i = 1 i = 2 i = 0 i =k k k k k

, and 1 if .1 i = 2k
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